说到这里。
约翰忽然将目光紧紧的锁定住了古兹密特,一字一句的说道:
“《PhysicalReviewLetters》也将与这篇论文一起,永久的载入科学史册。”
“到时候靠着这股热度,《PhysicalReviewLetters》甚至可能有机会。。。。成为物理学界的新王!”
“更关键的是。。。。古兹密特先生,不知道您是否有注意到,这个模型。。。。。它是支持粒子自旋的。”
听到粒子自旋这几个字。
…。
古兹密特的眉毛顿时狠狠一抖。
早先提及过。
别看如今的古兹密特已经年逾六旬,岁月的蹉跎早已令他原本乌黑浓密的秀发变得稀疏灰白,在所有人的眼中已经成为了一位【可敬的长辈】。
但实际上。
古兹密特其实是一位标准的少年天才,他几乎发现了粒子物理史上一个最关键的微粒属性:
粒子的自旋。
众所周知。
1896年的时候。
塞曼发现将原子置于磁场当中,它的某些谱线就会从一条分裂为三条。
这称为(正常)塞曼效应。
然而1897年初。
普雷斯顿发现磁场中的原子谱线的分裂数还可以不是三条,于是它就把这叫做反常塞曼效应。
正常塞曼效应可以由磁场中玻尔原子的能级分裂解释,但这会推导出谱线分裂数只能为三条,不能为其他的数字。
这样一来,反常塞曼效应就变得难以理解。
接着在1922年。
斯特恩-盖拉赫实验验证了原子角动量的量子化,但这仅仅是此实验的重要结论之一。
它的另一个重要结果,就是在实验中出现了与玻尔理论不符的偶分裂数结果——这暗示了半整数量子数的存在。
为了解释反常塞曼效应以及斯特恩-盖拉赫实验的疑难,25岁的古兹密特和乌仑贝克提出了粒子自旋的概念。
这个概念最初遭遇了大量的非议和抨击。
但在被一个个项目组先后验证成功后,它迅速成为了粒子物理的一个重要参数。
当时古兹密特和乌仑贝克在四个月内,被从异端变成了物理学界的未来之光。
他俩的老师叫做艾伦菲斯特,而艾伦菲斯特又是玻尔兹曼的学生。
于是当时玻尔兹曼这一系几乎人人都在狂欢,高呼重铸玻尔兹曼荣光我辈义不容辞。
但是。。。。。
谁都没想到的是。
如今快40年过去了,粒子自旋依旧没有获得诺贝尔奖。
这个成果没有得奖的原因很简单:
【3。】
物理学界没有更深入的现象或者数据去证明它的价值配得上诺奖。
没错。
从自旋被证明之后,它的理论几乎停滞了四十年。。。。。。