程诺解释道,“Dirichlet边值一定的情况下,分阶导数的微分方程就会存在一个这样的存在性条件。”
程诺拿起笔,在纸上唰唰唰写道,“(D0+y)(x)=(D1-y)(x),(D1-y)(x)=(D-y)(x)。”
男生看着程诺写下的一行公式,陷入了沉思。
可程诺并没有给他思考的时间。他又不是几人的老师,没有必要跟着他们的节奏走。
他接着阐述自己的观点,“你们试图想去证明分数阶导数的非线性微分方程边值存在唯一解的方法,是直接通过公式的推导,在利用Banach压缩映像理论得出结果。”
“但由刚才我写的那两个存在性条件来说,这种方法是百分百错误的!”程诺笃定的语气说道。
“那……”男生忍不住开口。
程诺双手下压,笑眯眯的道,“同学,不要这么着急嘛,平稳气场,平稳气场。正确的证明方法,我马上就讲。”
程诺先是在草稿纸上写下三个关键词:Green函数、Lipschitz压缩条件、Banach空间。
“我的证明法很简单,其实只要你们懂了我这三个关键词,明白也只是时间问题,不过为了节省双方的时间,我还是直接推导一遍吧。”程诺语气很平淡,理了理脑海中的思路,便像是讲课般的一样,边讲边写。
“第一步,采用扰动方法结合Green函数,进一步研究带有左右分数阶导数的微分方程边值问题,给出齐次微分方程Dirichlet边值问题,则一u(x)=0,x∈(0,1),y(0)=0=y(1)。”
“假设函数f(x,u)在[0,1[×(+∞,-∞)一(一oo,+oo)上是连续的,则齐次边值问题可以描述为-u(x)=f(x,u(x)),x∈(0,1),u(0)=0=u(1)。其中u(x)表示边值问题的解。”
…………
“……通过上述定理可获得边值问题在连续函数空间C[O,1]上存有唯一解.由已知条件可知,在连续空间C[O,1]上,算子T满足Lipschitz压缩条件,再根据Banach压缩映像理论,算子T在空间上个存在唯一不动点Y∈c[o,1],符合……”
“……通过上述定义及定理可证明,分数阶导数的非线性微分方程边值存在唯一解!”
边说边写的,程诺用了接近二十分钟的时间,将证明边值唯一解这个问题给察里四人从头到尾推导了一遍。
除了察里这个已经产生免疫力的存在,其余三位皆是处在了脑子当机的状态。
这就……结束啦?!
想当初,他们四个爆肝爆种的钻研了两天两夜,也没研究出个所以然来。
可到了程诺这,怎么就成了二十分钟的事了呢?
难道这就是天才和庸才的差距?不过也太特么的现实了吧?
米奇一脸苦色的望望察里,在盯着坐在椅子上神色自若的程诺,心中五味杂陈。
看走眼了啊!被打脸了啊!
他是在没想到,那传说中百年难遇的奇才,还真的被他给遇到了!
他走到察里面前,苦涩的问道,“察里,你的这位朋友叫什么名字?我怎么从来没听说过我们学院还有这号人物?”
察里耸耸肩,“你没听过是正常的,因为大神那种人物已经没有兴趣在学校内搞得风起云涌。最近那个火起来的程诺定理知道吧,就是大神提出来的!”
嘶——!
米奇悚然而惊!