而程氏复环猜想,则完美的将最为普通的有限域方程话复数域椭圆利用公式关系联系在一起。
就相当于是将汪洋大海引一条支流注入干涸的沙漠,让这片贫瘠的沙漠焕发生机与活力。
他们就算脑子再迟钝,也明白这个猜想的意义所在。
可以毫不夸张的说,这个程诺复环猜想的学术意义,甚至丝毫不弱于被列为七大数学猜想之一的霍奇猜想。
毕竟,霍奇猜想只是证明难度高,学术意义比与其并列的几个猜想还是差点。
台上,程诺神态悠然的站着。
台下,数十位数学家表情各异。
但另一边,过来主持进度报告会的几位克雷数学研究所的人员,就不知道现在是该高兴还是该悲伤。
程氏复环猜想的提出,对于几何界,甚至对于整个数学界,都可谓是一个天大的好事。
但是!
他们好不容易把程诺请来的目的,是为了证明谷山志村猜想啊!
现在呢?
谷山志村猜想没证出来,这也就算了。更过分的是,特么的又提出来一个猜想!
克雷数学研究所的人都快哭出来了。
本来,证明八个猜想他们就力有未逮了,现在又加上一个,简直就是硬生生给他们这个“清洗计划”提高难度。
…………
布莱克教授面色现在是一阵青一阵紫。
他发现,他真的大大的小觑了程诺。
他们“几何化猜想”证明小组三个月来的研究成果,在程诺那个“程氏复环猜想”面前,根本就不值一提。
但他又不想让这个年纪还没有他一半的小子把这场报告会的风头全占了,于是犹豫了几秒后,他对台上的程诺问道,“程诺先生,你的这个程氏复环猜想确实有很大的研究价值,但我想不通,这和你们研究的谷山志村猜想有什么联系?”
“布莱克先生这个问题问的很好。”程诺神色不变,朗声说道,“各位乍看,似乎这两个猜想并无丝毫的联系,但我需要告诉各位的是,这两个猜想之间不仅有联系,而且联系异常紧密。”
程诺在另一半空白的小黑板上唰唰几个公式。
“这个公式诸位恐怕再也熟悉不过,当初怀尔斯先生在证明费马大定理时,其中便用到这串公式。它的学术名叫做‘弗雷命题’。”
“利用弗雷命题,把其当作桥梁,便可以将谷山志村猜想和程氏复环猜想完美结合起来。加入谷山志村猜想不成立,程氏复环猜想中复数域椭圆的有理点就不可能等于有限域方程解个数加一。反之亦然!”
台下一个头发有些秃顶的数学家恍然道,“也就是说,谷山志村猜想成立则程氏复环猜想成立,程氏复环猜想成立则谷山志村猜想成立?”
程诺一指那个数学家,“没错,就是这样!”
哗~!
台下,第一次哗然出声。
有一些年纪不大的数学家,看向的程诺的目光已经带有满满的钦佩。
布莱克教授头也不抬,拿出一张草稿纸按照程诺讲述的方法迅速计算着,最后颓然发现,事实却是如程诺所出的那样。
谷山志村猜想和程氏复环猜想两者一体,一个成立,另一个一定会成立。
因此,程诺的工作,并非需要两个全部证明,只需要证明其中的一个。
…………